‘Natural experiment’ Demonstrates Top-Down Control of Spiders by Birds on a Landscape Level
نویسندگان
چکیده
The combination of small-scale manipulative experiments and large-scale natural experiments provides a powerful approach for demonstrating the importance of top-down trophic control on the ecosystem scale. The most compelling natural experiments have come from studies examining the landscape-scale loss of apex predators like sea otters, wolves, fish and land crabs. Birds are dominant apex predators in terrestrial systems around the world, yet all studies on their role as predators have come from small-scale experiments; the top-down impact of bird loss on their arthropod prey has yet to be examined at a landscape scale. Here, we use a unique natural experiment, the extirpation of insectivorous birds from nearly all forests on the island of Guam by the invasive brown tree snake, to produce the first assessment of the impacts of bird loss on their prey. We focused on spiders because experimental studies showed a consistent top-down effect of birds on spiders. We conducted spider web surveys in native forest on Guam and three nearby islands with healthy bird populations. Spider web densities on the island of Guam were 40 times greater than densities on islands with birds during the wet season, and 2.3 times greater during the dry season. These results confirm the general trend from manipulative experiments conducted in other systems however, the effect size was much greater in this natural experiment than in most manipulative experiments. In addition, bird loss appears to have removed the seasonality of spider webs and led to larger webs in at least one spider species in the forests of Guam than on nearby islands with birds. We discuss several possible mechanisms for the observed changes. Overall, our results suggest that effect sizes from smaller-scale experimental studies may significantly underestimate the impact of bird loss on spider density as demonstrated by this large-scale natural experiment.
منابع مشابه
Plant diversity in a nutshell: testing for small-scale effects on trap nesting wild bees and wasps
Declining plant species richness in agro-ecosystems and thus reduced habitat quality can have cascading effects on ecosystem functioning, leading to reduced pollination and biological control. Here we test if plant diversity can affect arthropod diversity and abundance on a very small scale, manipulating plant species richness (2, 6, 12 and 20 sown species) in small adjacent subplots (63 9 m) i...
متن کاملTransgenic Bt Cotton Does Not Disrupt the Top-Down Forces Regulating the Cotton Aphid in Central China
Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt), it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored h...
متن کاملThe importance of semi-natural landscape structures in an agricultural landscape as habitats for stenotopic spiders
The development of agricultural landscapes during the last decades has been characterized by an increase in management intensity, and a consequent decrease in the number and size of natural and semi-natural habitats. As a result, isolation of populations of stenotopic species of forests, shores, heathers, etc., has increased. This is a serious problem, especially for smaller invertebrates with ...
متن کاملTop-down control inhibits spatial self-organization of a patterned landscape.
Regular, self-organized spatial patterns in primary producers have been described in a wide range of ecosystems and are predicted to affect community production and resilience. Although consumers are abundant in most systems, the effect of trophic interactions on pattern formation in primary producers remains unstudied. We studied the effects of top-down control by herbivores on a self-organize...
متن کاملLocal adaptation to temperature conserves top-down control in a grassland food web.
A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012